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Interpretation of Percent Dissolved-Time Plots Derived from 
In Vitro Testing of Conventional Tablets and Capsules 

JOHN G .  WAGNER 

Abstract 0 It is shown that under sink conditions a percent dis- 
solved value at time t may simply be equivalent to the percent sur- 
face area generated to time t .  If this is so, then percent dissolved- 
time data may best be described by a distribution function and the 
parameters of the distribution employed to describe the data. 
Simulated percent dissolved-time data, generated by means of the 
logarithmic normal distribution function, are shown to yield ap- 
parent first-order plots. Hence, if the new concept is correct, ap- 
parent first-order kinetics, derived from in vitro dissolution tests 
on conventional tablets and capsules, may be an artifact in some 
cases. In the special case when surface area of drug available for 
dissolution decreases exponentially with time after some lag time, 
to, then first-order kinetics appear applicable to the dissolution data. 
Relationships between many of the constants in formerly derived 
dissolution rate equations and some equations derived in this re- 
port are shown. Dimensions of the constants are clarified. The new 
method of dissolution rate data examination is capable of providing 
characterizing parameters of greater potential utility than conven- 
tional treatments heretofore used. 

Keyphrases 0 Tablets, capsules-percent dissolved-time plots 
interpreted 0 First-order dissolution rate equation-sink condi- 
tions 0 Surface area effects-dissolution rates 0 Lag time-dis- 
solution rates 0 Distribution parameter, relation-dissolution 
data 

Although there is extensive literature on dissolution 
rate theory it is appropriate here to review some of the 
equations in order to show relationships between some 
of the constants and establish their dimensions. 

Quantitative Studies 

Conditions of Constant Surface Area-Noyes and Whitney (1) 
quantitatively studied dissolution by rotating cylinders of benzoic 
acid and lead chloride in water, then analyzing the solution at inter- 
vals of time. In their experiments the surface area of chemical avail- 
able for dissolution remained essentially constant. They showed that 
dissolution obeyed the equation 

(Eq. 1) 

where Cis the concentration of solute at time t ,  C. is the equilibrium 
solubility of the solute at the experimental temperature, and k is a 

dC/dt = k (C. - C )  

first-order rate constant with dimension l/time. In later experiments 
(2, 3) the surface area of solute available for dissolution, S, was 
incorporated into the equation to give 

(Eq. 2 

where kl is a constant with dimensions length2/time. It should be 
noted that k = k S  whence kl = k/S.  Brunner (4) used Fick's law of 
diffusion to establish a relationship between the constants k and kl in 
the above equations and other variables. These relationships were: 

dC/dt = ki S (Ce - C )  

k = DS/Vh (Eq. 3) 

0%. 4) kl = D/Vh 

where D is the diffusion coefficient of the solute in the dissolution 
medium, V is the volume of the dissolution medium, and h is the 
thickness of the diffusion layer. Equation 1 of Noyes and Whitney 
was written by Hixson and Crowell ( 5 )  as 

dWldt = KS(C, - C )  (Eq. 5 )  

where W is the amount of solute in solution at time i, dW/dt is the 
rate of appearance of solute in the solution at time t ,  and K is a 
constant with dimensions length/time. Equation 5 is obtained from 
from Eq. 2 by multiplying both sides by V and letting K = kl V.  By 
comparing terms we find: 

(Eq. 6) K = D/h 

Equation 5 may be written as 

dW/dt = KS/V(VC,  - W )  = k ( V C s  - W )  (Eq. 7) 

If a constant surface dosage form is studied under nonsink and non- 
reactive conditions then Eq. 7 should apply and the equation may 
be integrated to give 

W = VC, (1 - e--kt) (Eq. 8) 

Rearrangement of Eq. 8 and the taking of logarithms of both sides 
of the rearranged equation leads to: 

(Eq. 9) log (VC, - W )  = log vc, - ~ 
k t  2.303 

It should be noted that under conditions of constant surface area, 
nonsink, and nonreactive conditions, the asymptote is VC, and not 
WO (the initial amount of drug in the dosage form) or W" (the 
amount of drug ultimately dissolved at time infinity). 
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0 1 2  3 4 5 6 7 8 9 10 
TIME, rnin. 

Figure 1-A siniulcited plot qf surface urea uuuilable ,for dissolutiorr 
versus time generated with the logarithmic normal distributiori ,futic- 
tion. See E.wmple nh. I iri Experimental section for details. 

Under sink conditions (i.e.,  C << C,, usually C 5 O.lOC,) Eq. 5 

dW/dt = KSC, (Eq. 10) 

Equation 10 indicates that if surface area is held constant under 
sink and nonreactive conditions then rate of dissolution is constant 
(i.e.: kinetics are zero-order). Equation 10 may be integrated to 
give: 

simplifies to: 

W = KSC, t (Eq. 11) 

Equation 11 indicates that under these conditions a plot of W uer- 
sus t will yield a straight line with slope equal to KSC,. 

After a study of drug release from nonconventional tableted wax 
matrices under sink conditions Schwartz et al. (6) showed that linear 
plots were obtained when the amount of drug released per unit 
surface area of the disk exposed to the solvent was plotted against 
the square root of time. This type of plot was based on the T. Hi- 
guchi equation (7) for release of drug from an insoluble, inert matrix. 
In the previous symbolism of this report this equation is: 

where E is the porosity and T is the tortuosity of the matrix, A is the 
concentration of solid drug in the matrix, and the other symbols 
have the same meanings as defined above. These authors also showed 
that when log ( W“ - W )  was plotted cersus t the terminal points 

appeared to fall on a straight line but the initial points (early time 
values) formed a curve above the line. 

Conditions of Variable Surface .4rea--Hixson and Crowell 
( 5 )  showed that if there is no change in shape of solid during dissolu- 
tion, the surface area can be related to weight of undissolved drug by 
means of shape-volume factors and they derived their well-known 
“cube root law.” The contributions of these amd many other in- 
vestigators to dissolution rate theory have been reviewed by several 
authors (8-1 1). 

In 1959, Wagner (12) showed that most sustained-action dosage 
forms, for which release-time data had been reported in the literature 
hithertofore, released their contained drug to fluids in the i~ uitro 
tests at pseudo- (or apparent-) first-order rates. This concept was 
extended to conventional tablets by Schroeter et a/. (13). Subse- 
quently, it has become rather common practice to plot data derived 
from dissolution rate studies on conventional tablets and capsules in 
conformity with first-order kinetics. Usually the percent drug notdis- 
solved (i,e.,  100% - dissolved) is plotted on the logarithmic scale of 
semilogarithmic graph paper against time in minutes on the abcissa. 
Frequently the data points are nonlinear in the early time period, 
but, at later times, a straight line usually may be fitted to the data 
points. Such apparent first-order plots are obtained under sink con- 
ditions, as has been pointed out by Gibaldi and Feldman (14). 
However, the dissolution of a quantity of drug, from a dosage form 
which releases drug in a quantity of solvent which is just sufficient to 
dissolve the total amount of drug in the dosage form, may obey 
apparent second-order kinetics (14, 15). 

THEORETICAL 

New Approach to Derivation of the First-Order Rate Equation- 
For the case when there are sink conditions and surface area varies 
with time one may assume that during the first-order phase of disso- 
lution the surface area available for dissolution decreases exponen- 
tially with time. That is, one may assume: 

s = Sor-ks(t-ia) 0%. 13) 

here So is the surface area available for dissolution at the time when 
the apparent first-order dissolution phase commences at the time to .  
Substitution for S in Eq. 10 from Eq. 13 yields 

dW/dt = KC,Soe-%(t-’o) for t > - 0  t (Eq. 14) 

Integration of Eq. 14 gives 

w = w t ,  + K c,so 11 - e--k,.(--tu)] = wt, 
ks + M[1 - e-”Jt--l0)] for t 2 t o  (Eq. 15) 

where Wl,  is the amount dissolved at time to  and M = (K/ks)C,So 
and has dimension of mass. Thus, W” = W,,  + M where W“ is 
the amount in solution at infinite time: rearrangement of Eq. 15 
and substitution of W“’ for W t ,  +M>ields: 

W“ - W = A ~ e - J ~ s ( ~ - ‘ o )  for t 2 to  (Eq. 16) 

Taking logarithms of both sides of Eq. 16 gives Eq. 17. 

k 
2.303 log (W” - W )  = log M - ( t  - fa) for t 2 to (Eq. 17) 

where W” - W is the amount not dissolved from the dosage form. 
Equation 17 provides a basis for the apparent first-order plots 
mentioned above. A similar equation to Eq. 17 was derived by 
Gibaldi and Feldman (14). In their derivation they assumed that the 
surface area was proportional to the weight of undissolved drug, 
i.e., S 0: ( W” - W ) .  A similai assumption was made by Raghuna- 
than and Becker (1 5 )  in their derivation of a second-order rate equa- 
tion. 

New Approach to Interpretation of Percent Dissolved-Time Plots- 
It is feasible that the apparent first-order plots obtained from in citro 
testing of conventional tablets and capsules are artifacts. The scheme 
usually written for the processes involved in such in uitro tests is as 
follows : 

drug in disintegration drug in small dissolution drug in 
.+ solution dosage form -+ particles 

Slieme 1 
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Such sequential schemes imply that dissolution does not occur until 
the drug is in fine particle form. A modification of the scheme of 
Aguiar et a/ .  (16) seems more appropriate and is shown as Scheme 
11. 

drug in disintegration drug in deaggregation drug in small 
1 % 

dosage form aggregates particles 

dissolution dissolution 

\ drug in ,/ 
solution 

Scheme I1 

For example, consider a conventional tablet being added to the 
dissolution medium. Scheme I1 indicates that dissolution of drug 
occurs not only from the small particles but also from the intact 
tablet and the aggregates or granules produced after disintegration. 
For such a scheme one would expect the surface area of drug avail- 
able for dissolution to be essentially zero at zero time (since the in- 
tact dosage form presents essentially no surface area compared with 
the surface area eventually generated), then the surface area would 
increase with increase in time, eventually reach a maximum, then fall 
off  progressively with time until S = 0 at t = m. 

Under sink and nonreactive conditions one would expect Eq. 10 
to hold for each instant of time during the entire process. One may 
then integrate Eq. 10 between limits t = 0 and t = T to yield: 

T 

W = KC, S(t)dt 0%. 18) 

where W is the amount of drug dissolved to some particular time T 
and the integral represents the cumulative surface area which has 
been made available for dissolution from time zero to the particular 
time T. By analogy, at infinite time we obtain: 

W" = KC, S(t)dt (Eq. 19) 

Hence, 

[ * S ( f ) d f  

J o  
surface area gen- 

erated to time i" of 
total surface gen- i (Eq. 20) 1 . erated 

Thus, one may interpret each ordinate value of a percent dissolved- 
time plot as equivalent to the ratio of the cumulative surface area 
which has been made available for dissolution up to that time to the 
total surface area which is made available during the entire test 
multiplied by 100. In the special case when: 

then first-order kinetics would be observed after the lag time to.  
However, in other cases when Eq. 21 does not hold one would not 
expect true first-order kinetics. How then may one explain the 
apparent first-order plots frequently obtained from in aitro data? It 
is feasible that the answer to this question is that such plots are 
artifacts and arise only because Eq. 13 is an approximation to the 
S(t), t values past the peak of the S(r). t plot, or, in other words, that 
Eq. 17, after conversion to percentage values, yields an approxi- 
mation to the percent dissolved time data. It is extrem-ly important, 
however, to realize that if this is true, then there is no fundamental 
first-order process involved as in chemical kinetics. Rather, Eq. 20 
indicates the fundamental principle generating the data. 

Assuming the validity of Eq. 20 one may then use the percent 
dissolved-time data directly to determine the distribution of surface 

ao f--'.. 

i 

i 4 1  
8 3  

2 'i 
I ,  I 7  I I I ,  t , ,  

4 6  8 10 0 2  
TIME (min.) 

Figure %The data of Fig. 2 plotted in first-order kinetic fashion. 
See Eq. 26 and text nearby for interpretatioti. 

area available for dissolution during the in ritro test procedure. 
Scheme I1 and the text pertaining to it indicates one may expect a 
distribution of surface area with the following properties: (a)  the 
range of surface area would be expected to be closed at the lower 
end, for example by zero or significant surface area would appear 
after some lag time required for the capsule shell to break or dissolve 
or a tablet to start disintegrating; (b) the density function (deriva- 
tive) plot should rise steeply, reach a peak then fall off more slowly 
than the rise of the up part of the curve, i.e., an asymmetric distribu- 
tion; and (c )  effectively open at the upper end but with the cumula- 
tive plot reaching an asymptote. The most common types of dis- 
tributions having these properties are the logarithmic normal 
distribution and the logarithmic logistic distribution (17-22). How- 
ever, the distribution of surface area generated by such a process 
may well be described in some cases by other distribution laws or 
empirical equations (20), or, of course, the data may not adhere to 

100 

90 

80 

8 70 

6 60 
2 50 
0 

w 

9 40 
30 

20 

10 

0 1  2 3 4 5 6 7 a 9  1 0 1 1 1 2  
TIME, Min. 

Figure &Four sirnuluted percent dissolved versus time plots gene- 
rated with the logarithmic normal distribution function. F e a i l s  
see Exumpfe No. 2 of Experimental section. In each case logmX = 
0.4771 (antilog is 3.00, corresponding to T:07). Key: 

__ 
Code 6 1 0  alolloglox 
A 0.04771 0 .10  
B 0.1193 0 . 2 5  
C 0,2386 0.50 
D 0.4771 1.00 
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Figure 5-The data of Curues A and D of Fig. 4 plotted in first- 
order kinetic jiuhion. See Eqs. 27, 28, and 29 and text nearby for 
interpretation. 

any known distribution function. Both logarithmic normal probabil- 
ity graph paper and logarithmic logistic ruling paper are available 
commercially (23). To test the theoretical Eq. 20 one would simply 
plot the cumulative percent dissolved values on the probability scale 
(ordinate) uersus the corresponding time values on the logarithmic 
scale (abscissa). If the data are described by the corresponding 
distribution function then the points should fall randomly about a 
straight line which could be drawn through the points. In the case of 
logarithmic normal graph paper an estimate of the median time may 
be obtained by reading the time corresponding to the 50 % point ; an 
estimate of the SD may be obtained from the 16,50, and 84% points 
by appropriate conversion of the time values to their logarithms 
then taking differences. Equations appropriate to the logarithmic 
normal distribution are given by several authors (17, 18, 20, 24). 
Equations appropriate to the logarithmic logistic distribution are 
given by Berkson (22). 

EXPERIMENTAL 

In order to test whether the logarithmic normal distribution may 
explain many of the observations made from percent dissolved-time 
plots generated from in uitro testing of conventional tablets and cap- 
sules some log-normal distributions were generated and the data 
plotted in several ways. Data were generated as follows. 

Let 

log XE, log XEl, and log XEZ represent abscissa values at the end 

log XM represent abscissa values at the mid points of intervals; 
l F X  represent the average of the logarithms of the X values ; 
ul0 represent the SD in log base 10 units; 
2 represent the number of SD's measured from the median of 

the standard normal distribution (usual range is - 3  to f3); 
NQ, A'(-%), and A'(&) be values of the areas under the standard 

normal distribution curve from - m to 2, Zl, and Ze,.re- 
spectively (see Table I, p. 392 of Reference 24 or other statistical 
textbooks); 

of intervals ; 

Y represent the value plotted on the ordinate scale. 
Then, 

__. 

XB = antilog [ulo 2 + log xl (Eq. 22) 

A set of X E  and YE values generated by means of Eqs. 22 and 
23 will yield a linear plot when plotted on logarithmic normal 
probability graph paper and a plot such as shown in Figs. 2 and 4 
when plotted on Cartesian coordinate graph paper. The plots illus- 
trated in this report were prepared by employing 14 values ofZrang- 
ing from -2.6 to +2.6 with increments of 0.4. 

To prepare density function (derivative) plots, as illustrated in 
Fig. 1 one uses the data generated by means of Eqs. 22 and 23 as 
follows: 

XM = antilog [ _ _ ~  2 ] (Eq. 24) 

(Eq. 25) 

where Zn is the total number of items and was taken as 58 for Fig. 1 
and as 100 in other cases. 

Example No. 1-log X was taken as 0.7102, ul0 was taken as 
0.1263, and Zn was made equal to 58. Eqs. 22-25 yielded the 
simulated data shown in Fig. 1. The YM values from eq. 25 are 
plotted as surface area available for dissolution on the ordinate and 
the XM values from Eq. 24 are plotted as time values on the ab- 
scissa. 

Applying Eq. 20, the curve shown in Fig. 2 was obtained. Here 
the YE values obtained with Eq. 23 are plotted as percent dissolved 
on the ordinate and the XE values obtained with Eq. 22 are plotted 
as time values on the abscissa. The striking similarity between this 
simulated curve and many real percent dissolved-time plots is at 
once apparent. 

Figure 3 is a plot of (100 % - dissolved) on the logarithmic scale of 
semilogarithmic graph paper uersus time in minutes. That is, Fig. 3 
is a plot of the same data as shown in Fig. 2. That portion of the data 
shown in Fig. 1 from the peak onward yielded an apparent straight 
line in Fig. 3. Least squares linear regression gave the equation: 

log (100% dissolved) = 3.5498 - 0.34671, (Eq. 26) 

for the terminal sixpoints. The coefficient of determination was 0.997 
indicating that 99.7 % of the variance of the ordinate values could be 
accounted for by differences in the abscissa values. The apparent 
fist-order rate constant is 0.798 min.-l. However, it is obvious that 
first-order kinetics are really not involved here at all. Figure 3 is 
really an artifact. 

Example No. 2-Four log-normal distributions were generated- 
all having the same median. In each case log X was 0.4771 with an 
antilog of 3 min. corresponding to the median. Values of u10 equal to 
0.04771,0.1193, 0.2386, and 0.4771 were used for the four distribu- 
tions such that the ratios ulo/log X were 0.10, 0.25, 0.50, and 1.00, 
respectively. The cumulative plots on Cartesian coordinate graph 
paper are shown in Fig. 4. As the SD increases from Curve A 
through Curve D the curves lean more and more and the apparent 
lag time decreases-but all four curves pass through the same point 
corresponding to 50% dissolved at 3 min. The latter value is com- 
parable to the TSo9. value of a real percent dissolved-time plot. 

Semilogarithmic plots of (100% - dissolved) uersus time for the 
data corresponding to Curves A and D are shown in Fig. 5. Curve 
A of Fig. 4 gave an apparent linear semilogarithmic plot in the range 
72.5 to 1.4% not dissolved. Least-squares linear regression gave the 
equation : 

log (10Oz dissolved) = 6.7716 - 1.69651, (Eq. 27) 

from the terminal eight points. The coefficient of determination was 
0.972 and the corresponding apparent first-order rate constant was 
3.91 min.-I. Data from Curve D of Fig. 4 appeared to yield two 
apparently linear segments in Fig. 5. The first segment (early time 
values) gave the equation : 

log XEZ - log xE1 

YM = Zn [N(Zz) - N(Zl)] 

__ 

~ 

__ 

log (100x - dissolved) = 2.0210 - 0.1031t, (Eq. 28) 

with a coefficient of determination of 0.996. The second (later time 
values) gave the equation: 

log (100% - dissolved) = 1.3677 - 0.036821 (Eq. 29) 

with a coefficient of determination of 0.998. The apparent first-order 
rate constants were 0.237 and 0.0848 min.-l, respectively. 
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The fact that real percent dissolved-time data sometimes yields 
two apparent first-order rates was discussed by Gibaldi (25). How- 
ever, if the interpretation suggested by Eq. 20 is correct, then the 
first-order rate constants in such a case are really artifacts. The data 
shown in Figs. I ,  2 and 4 are best described by the medians and the 
SD’s which are parameters of the log-normal distributions and not 
by the apparent first-order rate constants obtained by plotting the 
data as shown in Figs. 3 and 5. 

DISCUSSION 

Eqs. 18, 19, and 20 may not be exact in application to con- 
ventional tablet or capsule dissolution rates for at least two reasons. 
First, wetting phenomena may in large part be responsible for the 
initial “foot” observed in many percent dissolved-time plots. Many 
other factors are also involved initially when the dosage form disin- 
tegrates. Hence the equations cited and the laws of probability may 
not be strictly valid for the very early part of the dissolution curve. 
Secondly, Higuchi and Hiestand (26) and Goyan (27) have pointed 
out that the effective diffusion layer thickness, k, may change with 
particle size, hence Kin Eqs. 18 and 19 may not truly be a con- 
stant. However, one would expect the greatest change in K ,  if it 
occurred, to occur near the end of the dissolution process when the 
fine particles are very small in size. 

By a new method using thermal analysis Nogami et al. (28), 
Nakai and Kubo (29), and Nakai (30) have been able to obtain plots 
of surface area versus time during disintegration and dissolution of 
compressed tablets. In general their treatment and data support the 
applicability of Eq. 20 to conventional tablets and capsules. Also, 
their plots of surface are versus time obtained by the thermal analy- 
sis method have an asymmetrical shape analogous to Fig. 1 which 
suggests a possible linearization on logarithmic probability graph 
paper. 

Preliminary trials indicate that real percent dissolved-time data 
frequently yield linear plots on logarithmic normal graph paper. 
Examples are as follows. Wood (31) reported on the dissolution rate 
of aspirin from a commercial tablet (Bufferin) in 0.1 N HCI, 0.01 N. 
HCI and pH 7.5 buffer at both a slow stirring speed (30 r.p.m.) and 
a fast stirring speed (440 r.p.m.). Five of the six sets of data he re- 
ported give straight lines on logarithmic probability graph paper 
when the percent dissolved values are plotted on the probability scale 
and the time values on the logarithmic scale. The exception was the 
pH 7.5 buffer-440 r.p.m. data which gave a curved line on loga- 
rithmic probability paper but a single straight h e  when the data 
were plotted in first-order fashion. The dissolution of griseofulvin 
from capsules and tablets in simulated intestinal fluid provided data, 
reported by Katchen and Symchowicz (32), which gave linear plots 
on logarithmic-probability graph paper. Castello et al. (33) reported 
average percent dissolved-time data for dissolution of twenty indi- 
vidual potassium chloride tablets in pH 7.2 buffer when tested in a 
new multiple testing station apparatus. These average values gave a 
linear logarithmic-normal probability plot. 

The author is offering the distribution plot concept as another 
possible way of evaluating percent dissolved-time data derived from 
the testing of conventional tablets and capsules. If such data is lin- 
earized, for example, by plotting on logarithmic-probability graph 
paper then all the data derived from a given test may be described 
adequately by the parameters of the distribution such as the median 
and SD in the log-normal case. These parameters may then possibly 
be used to correlate with in vivo data. The importance of this con- 
cept with respect to establishment of official rate of dissolution 
standards and in vitro-in vivo correlations is, therefore, evident. For 
example, the Ts0% value above would provide an inadequate de- 
scription of each set of data shown in Fig. 4. However, if these data 
were plotted on logarithmic-probability graph paper, the estimated 
median (Tso,) and the SD of each distribution would provide 
adequate descriptions. Another advantage is that, if the data are 
linearized by logarithmic-probability graph paper, one may readily 
read off any desired value such as Tx0%, Tso%. Tw%, etc. 

The author does not intend to imply that first-order plots for 
tablet and capsule dissolution are “out.” If data provide single 
component first-order plots which go through the origin point 
(100% on logarithmic scale) or very near it then such plots provide 
an adequate description. Also such data would give a curved line on 

logarithmic-probability graph paper. However, there are many sets 
of percent dissolved-time data which yield very poor first-order plots 
and frequently there appears to be two first-order components; an 
example is the data of Wood (31) cited above. In these cases the trial 
of a distribution plot such as the use of logarithmic-normal prob- 
ability graph paper may be worthwhile. As pointed out, the true 
distribution will be complex, and generally indeterminate, but often 
approximated within fixed limits by such distributions as cited. The 
author wishes to caution against claims of absoluteness of a calcu- 
lated distribution shape (and differences) based upon fortuitous fits 
of data to a specific theoretical distribution. 
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